317 research outputs found

    Boosting the Adversarial Transferability of Surrogate Models with Dark Knowledge

    Full text link
    Deep neural networks (DNNs) are vulnerable to adversarial examples. And, the adversarial examples have transferability, which means that an adversarial example for a DNN model can fool another model with a non-trivial probability. This gave birth to the transfer-based attack where the adversarial examples generated by a surrogate model are used to conduct black-box attacks. There are some work on generating the adversarial examples from a given surrogate model with better transferability. However, training a special surrogate model to generate adversarial examples with better transferability is relatively under-explored. This paper proposes a method for training a surrogate model with dark knowledge to boost the transferability of the adversarial examples generated by the surrogate model. This trained surrogate model is named dark surrogate model (DSM). The proposed method for training a DSM consists of two key components: a teacher model extracting dark knowledge, and the mixing augmentation skill enhancing dark knowledge of training data. We conducted extensive experiments to show that the proposed method can substantially improve the adversarial transferability of surrogate models across different architectures of surrogate models and optimizers for generating adversarial examples, and it can be applied to other scenarios of transfer-based attack that contain dark knowledge, like face verification. Our code is publicly available at \url{https://github.com/ydc123/Dark_Surrogate_Model}.Comment: Accepted at 2023 International Conference on Tools with Artificial Intelligence (ICTAI

    Neural Point Process for Learning Spatiotemporal Event Dynamics

    Full text link
    Learning the dynamics of spatiotemporal events is a fundamental problem. Neural point processes enhance the expressivity of point process models with deep neural networks. However, most existing methods only consider temporal dynamics without spatial modeling. We propose Deep Spatiotemporal Point Process (\ours{}), a deep dynamics model that integrates spatiotemporal point processes. Our method is flexible, efficient, and can accurately forecast irregularly sampled events over space and time. The key construction of our approach is the nonparametric space-time intensity function, governed by a latent process. The intensity function enjoys closed form integration for the density. The latent process captures the uncertainty of the event sequence. We use amortized variational inference to infer the latent process with deep networks. Using synthetic datasets, we validate our model can accurately learn the true intensity function. On real-world benchmark datasets, our model demonstrates superior performance over state-of-the-art baselines. Our code and data can be found at the https://github.com/Rose-STL-Lab/DeepSTPP

    EHRTutor: Enhancing Patient Understanding of Discharge Instructions

    Full text link
    Large language models have shown success as a tutor in education in various fields. Educating patients about their clinical visits plays a pivotal role in patients' adherence to their treatment plans post-discharge. This paper presents EHRTutor, an innovative multi-component framework leveraging the Large Language Model (LLM) for patient education through conversational question-answering. EHRTutor first formulates questions pertaining to the electronic health record discharge instructions. It then educates the patient through conversation by administering each question as a test. Finally, it generates a summary at the end of the conversation. Evaluation results using LLMs and domain experts have shown a clear preference for EHRTutor over the baseline. Moreover, EHRTutor also offers a framework for generating synthetic patient education dialogues that can be used for future in-house system training.Comment: To appear in NeurIPS'23 Workshop on Generative AI for Education (GAIED

    FISEdit: Accelerating Text-to-image Editing via Cache-enabled Sparse Diffusion Inference

    Full text link
    Due to the recent success of diffusion models, text-to-image generation is becoming increasingly popular and achieves a wide range of applications. Among them, text-to-image editing, or continuous text-to-image generation, attracts lots of attention and can potentially improve the quality of generated images. It's common to see that users may want to slightly edit the generated image by making minor modifications to their input textual descriptions for several rounds of diffusion inference. However, such an image editing process suffers from the low inference efficiency of many existing diffusion models even using GPU accelerators. To solve this problem, we introduce Fast Image Semantically Edit (FISEdit), a cached-enabled sparse diffusion model inference engine for efficient text-to-image editing. The key intuition behind our approach is to utilize the semantic mapping between the minor modifications on the input text and the affected regions on the output image. For each text editing step, FISEdit can automatically identify the affected image regions and utilize the cached unchanged regions' feature map to accelerate the inference process. Extensive empirical results show that FISEdit can be 3.4×3.4\times and 4.4×4.4\times faster than existing methods on NVIDIA TITAN RTX and A100 GPUs respectively, and even generates more satisfactory images.Comment: 12 pages, 7 figure

    Crocs: Cross-Technology Clock Synchronization for WiFi and ZigBee

    Full text link
    Clock synchronization is a key function in embedded wireless systems and networks. This issue is equally important and more challenging in IoT systems nowadays, which often include heterogeneous wireless devices that follow different wireless standards. Conventional solutions to this problem employ gateway-based indirect synchronization, which suffers low accuracy. This paper for the first time studies the problem of cross-technology clock synchronization. Our proposal called Crocs synchronizes WiFi and ZigBee devices by direct cross-technology communication. Crocs decouples the synchronization signal from the transmission of a timestamp. By incorporating a barker-code based beacon for time alignment and cross-technology transmission of timestamps, Crocs achieves robust and accurate synchronization among WiFi and ZigBee devices, with the synchronization error lower than 1 millisecond. We further make attempts to implement different cross-technology communication methods in Crocs and provide insight findings with regard to the achievable accuracy and expected overhead
    • …
    corecore